Usage: docker [OPTIONS] [DOCKER_RUN_ARGS]... [DOCKER_IMAGE]
Run your code in a docker container.
Run your program inside a Docker image with W&B configured. Set the
``WANDB_DOCKER`` and ``WANDB_API_KEY`` environment variables in the
container and mount the current working directory at ``/app`` by default.
Pass additional arguments to insert them into ``docker run`` before the
image name. If you do not specify an image, select a default image
automatically.
```sh wandb docker -v /mnt/dataset:/app/data wandb docker gcr.io/kubeflow-
images-public/tensorflow-1.12.0-notebook-cpu:v0.4.0 --jupyter wandb docker
wandb/deepo:keras-gpu --no-tty --cmd "python train.py --epochs=5" ```
Override the container entrypoint by default to ensure ``wandb`` is
installed. If you pass ``--jupyter``, ensure Jupyter is installed and start
JupyterLab on port 8888.
If NVIDIA Docker is available, use the NVIDIA runtime automatically.
To set W&B environment variables for an existing ``docker run`` command
without modifying the entrypoint, use ``wandb docker-run``.
Options:
--nvidia / --no-nvidia Use the nvidia runtime, defaults to nvidia if
nvidia-docker is present
--digest Output the image digest and exit
--jupyter / --no-jupyter Run jupyter lab in the container
--dir TEXT Which directory to mount the code in the container
--no-dir Don't mount the current directory
--shell TEXT The shell to start the container with
--port TEXT The host port to bind jupyter on
--cmd TEXT The command to run in the container
--no-tty Run the command without a tty
--help Show this message and exit.